
 International Journal of Computer Trends and Technology Volume 72 Issue 7, 26-31, July 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I7P104 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Hybrid Hardware in Loop Architecture for Autonomous

Vehicles

Shobhit Kukreti1, Tanvi Hungund2, Priyank Singh3

1Independent Software Researcher, Carnegie Mellon University, PA, USA.
2Independent Software Researcher, Cal State Fullerton, CA, USA.

3Indepedendent Software Researcher, Rochester Institute of Technology, NY, USA.

1Corresponding Author : skukreti@linux.com

Received: 10 May 2024 Revised: 21 June 2024 Accepted: 11 July 2024 Published: 30 July 2024

Abstract - The automotive world is going through a paradigm shift. With sensor technologies like 4K cameras, LiDARs, Radars,

etc., becoming more affordable and advances in Deep Learning algorithms development, research is trending towards

developing Autonomous Vehicles and bringing them mainstream. However, a challenge remains in the commercialization of

technologies. An automotive vehicle undergoes a rigorous verification and validation model. Perfected over decades, standards

and guidelines are introduced to minimize failures. However, there exists a gap in testing when working with new sensors and

algorithms, and our paper focuses on a hybrid setup for hardware in loop testing, which enables software to iterate over their

development faster without having to wait to deploy on actual cars for testing.

Keywords - Autonomous Vehicles, Linux, Operating System, Emulation, QEMU.

1. Introduction
Embedded Machine Learning, computing on the edge is

crucial for fostering innovation in a multitude of intelligent

devices. The evolution of ARM processors has created an

ecosystem of smart devices where significant computing

exists to run Machine Learning Models. The next innovation

is touted to be in the automotive sector, where machine

learning and hardware combine to improve the transportation

sector. The edge computer means that the decision-making

power is now with an ECU [1] (Engine Control Unit). A car

can have multiple ECUs, with each having its own

functionality, from controlling the wipers to controlling the

steering accelerator based on the user input. In autonomous

vehicles, a software agent shall drive these actuators. This

makes the testing of the software, along with the underlying

hardware, a challenge. Hardware-in-the-loop (HIL) testing

involves connecting a real hardware system (such as an ECU)

to a virtual environment that simulates real-world conditions.

This allows engineers to test the control systems’

behavior under various conditions without needing the entire

vehicle. HIL testing allows identify potential issues early in

the development process, thus reducing the need for expensive

and time-consuming physical prototypes. Figure 1 shows a V-

Model, also called the verification and validation model.

International industry standards prescribe the model for the

development of safety-critical systems like ISO26262. While

the left side of the V model focuses on requirements at both

macro and micro levels, the right side focuses on software

integration and testing. In the initial stages, the software is

tested in a purely simulated environment to allow for unit and

module testing, while the later stages test the overall software

on the target hardware platform with a full load of sensors.

Often, the testing infrastructure between the initial stages

in the simulated environment vs the actual target hardware

brings in a huge variation. For instance, a software driver is

implemented to capture 3d point cloud data from a LiDAR.

The software driver in order to test, will fake add function

stubs in code to mimic the sequence of operations to be

performed on the LiDAR hardware only to see hardware-

related issues when testing the software on the target

hardware.

Our paper aims to bridge the gap in the testing process

with a Hybrid Hardware Loop Testing process, which uses

QEMU [2] virtualization and creating custom device models

in QEMU to enable hardware systems to be patched through

to the virtualized environment.

The rest of the paper is organized as follows. Introduction

to hardware emulators in section II. Section III describes

QEMU, Section IV describes the Process of Adding User

Defined Devices in QEMU. Section V shall have the Device

Driver Development in Linux and we shall conclude in section

VI. Fig. 1 v- model of development

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shobhit Kukreti et al. / IJCTT, 72(7), 26-31, 2024

27

Fig. 1 v-model of development

Fig. 2 Qemu build instruction

Fig. 3 Invoking QEMU

2. Hardware Emulators
An embedded system product development depends on

the availability of the hardware. In the absence of hardware

and for the software development to progress, developers

often use hardware emulators. For instance Android

developers use the Android Emulator [3]for developing their

application. In this context, emulation can be defined as using

a host CPU’s resources to mimic the functionality of another

CPU architecture. Thus a software developed for say ARM

CPU architecture can be run on a host system which has an

x86 architecture. This is the typical use-case of an Android

emulator for android application development. Some widely

used emulation products are QEMU, BOCHS [4] RENODE

[5] In automotive ECU HIL testing commercial setups like

dSPACE [6] are often used for validation. Our paper focuses

on QEMU and its application in the Hardware in Loop

Testing. QEMU, an open-source emulator which employs

dynamic binary translation to achieve high performance when

emulating guest systems on different host architectures. The

modular nature of QEMU allows it to emulate a wide range of

hardware components, including CPUs, network interfaces,

and storage controllers, making it highly adaptable for various

use cases. QEMU's KVM (Kernel-based Virtual Machine)

integration allows for near-native execution speeds by

leveraging hardware virtualization extensions if supported by

the host system. While QEMU supports multitude of standard

hardware interfaces, the Autonomous Vehicle domain brings

in new hardware which are either not modeled in QEMU or

not yet available in public domain to be accessible to

everyone.

3. QEMU
We will need the QEMU source code to add custom

hardware. You can download the source from the official

QEMU repository https://gitlab.com/qemu-project/qemu.git.

To build QEMU source code: We also require a root file

system and a Linux Kernel Image to use on our custom QEMU

emulator. You can use the debootstrap [7] tool to generate a

Debian [8] base image and the Linux Kernel [9] source code

from the link below.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

.

Another popular option is to use buildroot [10]

(https://buildroot.org/) for generating a root file system along

with the kernel image. Since we are generating an image for

the QEMU Virtual Platform, we shall use the config

qemu_aarch64_virt_defconfig. Once both qemu and buildroot

finish the making process, Qemu can be invoked using the

command below, shown in Figure 3. QEMU shall execute

with the kernel image and the roots parameter to start a serial

console emulating an ARM64 [11] virtual system, as shown

in Figure 4.

Implementation

Module Design Module Test

Function Design

System Test System Design

Functional Test

Requirements Customer Test

qemu-system-aarch64 -M virt -cpu cortex-a57 \

-smp 4 -m 1G -kernel Image \

-append "root=/dev/vda rw console=ttyAMA0" \

-semihosting -nographic -drive file=rootfs.ext4

https://buildroot.org/

Shobhit Kukreti et al. / IJCTT, 72(7), 26-31, 2024

28

Fig. 4 Serial console

4. User Defined Custom Hardware Model
With the standard QEMU invocation completed, we shall

now focus on creating a custom hardware model. To re-iterate,

this user-defined model being developed can be used to

replicate a hardware interface, say a sensor register layout, add

function hooks into a world view simulator CARLA [12] or

add software to create a pass-through of the camera data,

which is connected to the host via a special interface like

GMSL [13]. Our target system is an Embedded ARM64 SOC,

as shown in Figure 5, with a user-defined co-processor added

to the system bus. To show QEMU’s scalable and modular

architecture, we can even send an interrupt event from this co-

processor to the main Application Processor. In the QEMU

source code directory, we shall modify the virtual platform

defined under hw/arm/virt.c and its associated header file. In

the include/hw/arm/virt.h file we add a device type

VIRT_CUSTOM_COPROC. ARM/ARM64 architecture has a

flat memory model.

 Fig. 5 ARM virtual platform

The data structure MemMapEntry holds the memory map

of the entire SOC. We shall add an entry in a vacant space at

address 0x0b000000 with a length of 0x200. Similarly, we add

a virtual IRQ from our user-defined co-processor to the

Application Processor. Next, we shall create the software

model of our user-defined model, which is slotted at base

address 0x0b000000 and has an associated interrupt. Under

include/hw/arm and under hw/arm, create a new sub-folder,

which will contain the header file and the source file of your

model.Our user-defined model has a device id of 0x42024.

The id offset can be read at base_address + 0x0

(kPeripheralIDOffset). The simple model shown here shall

take in two 32-bit input numbers in the input registers from

the Application Processor and shall return the output of it in

the output register. The register at offset 0x14

(kStartProcessing) shall be the trigger from the software driver

to begin the compute. Additionally, the device driver can

check if the user modeled coprocessor is busy with the register

at 0x10 (kProcIdle) as well as reset the co-processor with a

reset register at 0x30 (kResetCoProc). If the Device Driver

configures the interrupt (register offset 0x8) to be enabled, the

user model shall send a completion interrupt back to AP once

the execution is completed.

Fig. 6 Virtual ARM Platform Memory Map

Fig. 7 Virtual ARM Platform IRQs

Booting Linux on physical CPU 0x0000000000 [0x411fd070]

Linux version 6.6.18 (shwetashob@t-1000) (aarch64-buildroot-

linux-gnu-gcc.br_real (Buildroot 2024.02-479-gdb37b0e27d)

12.3.0, GNU ld (GNU Binutils) 2.41) #15 SMP Sun Apr 28

23:22:46 PDT 2024

random: crng init done

……….

Starting syslogd: OK

Starting klogd: OK

Running sysctl: OK

Starting network: udhcpc: started, v1.36.1

udhcpc: broadcasting discover

udhcpc: no lease, forking to background

OK

Welcome to Buildroot

buildroot login:

SOC System Bus

ARM/AArch64

CPU
RAM

ARM GIC

Custom

Co-Processor
Device MMΙΟ Device MMΙΟ

Shobhit Kukreti et al. / IJCTT, 72(7), 26-31, 2024

29

Fig. 8 User defined model attributes

Our new model registration with QEMU uses the macro

type_init.

Fig. 9 Code to register the user-defined model

Fig. 10 Init

Fig. 11 MMIO read function

Fig. 12 MMIO write function

Fig. 13 QEMU timer callback

 The code snippets in Figures 9 to 14 show how the co-

processor is registered with QEMU, its init sequence where

the memory device memory region is intialized with the length

0x200. The read/write APIs get invoked when a driver makes

a hardware register access in the co-processor assigned

memory section. Once the driver sets a non-zero value in the

kStartProcessing register, we trigger the QEMU internal

timer. On completion of the time period, we receive a callback

where we output the result of the execution as well as send an

interrupt to the Application Processor. After adding the code

and adding the source files to the QEMU Kconfig/Meson

build system, we are ready to rebuild the QEMU binary.

Shobhit Kukreti et al. / IJCTT, 72(7), 26-31, 2024

30

Fig. 14 Instantiating the CoProcessor in virt.c

5. Device Driver and Validation
With the new compiled qemu binary, if we start the

emulator with the ARM virtual machine in the monitor mode

and run the command info mtree, you shall see the user-

defined coprocessor in the system address map.

Next, if we read the memory using devmem [14] [at the

base-address of our new device, we should read the hard-

coded device id, which confirms our user-model read

operation is working as expected.

Fig. 15 Address map with user model

We shall write a tiny linux device driver which will match

against the compatible string “coproc” as defined earlier in our

hw/arm/virt.c file. We read the interrupt property in the device

tree and register an interrupt handler for it. Recall that our co-

processor fires an interrupt when the device driver initiates the

processing of the inputs by writing to the register at offset

0x14, which in turn triggers an internal QEMU Timer. The

timer call back is used to send an interrupt to the AP.

Fig. 16 Registering the linux device driver

Fig. 17 The probe function

Fig. 18 The Co-Processor interrupt handler

devmem 0xb000000

0x00042024

build ./qemu-system-aarch64 -machine virt -monitor stdio

QEMU 9.0.50 monitor - type 'help' for more information

(qemu) info mtree

address-space: cpu-memory-0

address-space: memory

 0000000000000000-ffffffffffffffff (prio 0, i/o): system

 0000000009010000-0000000009010fff (prio 0, i/o):

pl031

 000000000b000000-000000000b0001ff (prio 0, i/o):

CoProcessor-Custom

static int coproc_remove(struct platform_device *pdev)

{

 return 0;

}

static const struct of_device_id coproc_of_match[] = {

 { .compatible = "coproc", },

 { }

};

MODULE_DEVICE_TABLE(of, coproc_of_match);

static struct platform_driver coproc_driver = {

 .probe = coproc_probe,

 .remove = coproc_remove,

 .driver = {

 .name = "coproc-driver",

 .of_match_table = of_match_ptr(coproc_of_match),

 },

};

module_platform_driver(coproc_driver);

static int coproc_probe(struct platform_device *pdev)

{

 struct device *dev = &pdev->dev;

 ...

 cd->base = devm_ioremap(dev, res->start,

resource_size(res));

 cd->virq = irq_of_parse_and_map(pdev->dev.of_node,

0);

 if (cd->virq == 0) {

 }

 else {

 ret = request_irq(cd->virq,

(irq_handler_t)coproc_irq_handler,

 IRQF_TRIGGER_RISING,

"COPROC_IRQ_HANDLER", cd);

 }

 // Enables Interrupt

 writel(1, cd->base + 0x8);

}

static irqreturn_t coproc_irq_handler(int irq, void *data)

{

 struct coproc_data *cd = (struct coproc_data*) data;

 pr_info("-------------------------------CoProc Irq Rx\n");

 readl(cd->base + 0xc);

 pr_info("-------------------------------CoProc Irq Cleared

When Status Reg is Read\n");

 return IRQ_HANDLED;

}

Shobhit Kukreti et al. / IJCTT, 72(7), 26-31, 2024

31

We compile the device driver into the Linux Kernel

Image and re-invoke QEMU with the new kernel image. On

running cat /proc/interrupts, we should see our IRQ handler

registered.

Fig. 19 Linux interrupts

Fig. 20 Running the shell script

We shall use a shell script with devmem to write two input

numbers and observe the output. An interrupt is generated on

completion of the work and we see the print statements in the

serial console.

6. Conclusion
In this paper, we present a new hybrid approach to

performing Hardware Loop Testing for automotive

applications. QEMU being a versatile emulator, we add a user-

defined model using the ‘C’ programming language.

With the HIL setup as part of the test infrastructure,

developers can focus on higher-level Computer Vision and

Deep Learning problems with real input data such as camera

images, radar data or the 3d point cloud data from a LiDAR.

For future work, we intend to provide create a sensor

framework layer which will allow the user-defined model to

interface with automotive sensors seamlessly.

References
[1] Jayshri Sudhir Potdar, and Yashwant B Mane, “Hardware Design and Development of Engine Control Unit for Four Cylinder Engine,”

2018 Fourth International Conference on Computing Communication Control and Automation, Pune, India, pp. 1-5, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[2] Run apps on the Android Emulato, Developers. [Online]. Available: https://developer.android.com/studio/run/emulator

[3] QEMU. [Online]. Available: qemu.org

[4] BOCHS. [Online]. Available: https://bochs.sourceforge.io/

[5] RENODE. [Online]. Available: https://renode.io/

[6] dSPACE HIL. [Online]. Available: https://www.dspace.com/

[7] Debootstrap. [Online]. Available: https://wiki.debian.org/Debootstrap

[8] Debian. [Online]. Available: https://www.debian.org/

[9] Linux Kernel. [Online]. Available: https://www.kernel.org/

[10] Buildroot. [Online]. Available: https://buildroot.org/

[11] ARM64. [Online]. Available: https://en.wikipedia.org/wiki/AArch64

[12] CARLA. [Online]. Available: https://carla.org/

[13] Kainan Wang, Gigabit Multimedia Serial Link (GMSL) Cameras as an Alternative to GigE Vision Cameras, Analog Devices, 2023.

[Online]. Available: https://www.analog.com/en/resources/analog-dialogue/articles/gigabit-multimedia-serial-link-gmsl-cameras.html

[14] Devmem. [Online]. Available: https://trac.gateworks.com/wiki/linux/devmem

https://doi.org/10.1109/ICCUBEA.2018.8697769
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+Design+and+Development+of+Engine+Control+Unit+for+Four+Cylinder+Engine&btnG=
https://ieeexplore.ieee.org/document/8697769

